Share Email Print
cover

Proceedings Paper

Betacam: a commercial approach to β-autoradiography
Author(s): J. Cabello; A. Holland; K. Holland; A. Bailey; I. Kitchen; K. Wells
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Autoradiography is a well established imaging modality in Biology and Medicine. This aims to measure the location and concentration of labelled molecules within thin tissue sections. The brain is the most anatomically complex organ and identification of neuroanatomical structures is still a challenge particularly when small animals are used for pre-clinical trials. High spatial resolution and high sensitivity are therefore necessary. This work shows the performance and ability of a prototype commercial system, based on a Charged-Couple Device (CCD), to accurately obtain detailed functional information in brain Autoradiography. The sample is placed in contact with the detector enabling direct detection of β- particles in silicon, and the system is run in a range of quasi-room temperatures (17-22 °C) under stable conditions by using a precision temperature controller. Direct detection of β- particles with low energy down to ~5 keV from 3[H] is possible using this room temperature approach. The CCD used in this work is an E2V CCD47-20 frame-transfer device which removes the image smear arising in conventional full-frame imaging devices. The temporal stability of the system has been analyzed by exposing a set of 14[C] calibrated microscales for different periods of time, and measuring the stability of the resultant sensitivity and background noise. The thermal performance of the system has also been analyzed in order to demonstrate its capability of working in other life science applications, where higher working temperatures are required. Once the performance of the system was studied, a set of experiments with biological samples, labelled with typical β- radioisotopes, such as 3[H], has been carried out to demonstrate its application in life sciences.

Paper Details

Date Published: 14 March 2009
PDF: 7 pages
Proc. SPIE 7258, Medical Imaging 2009: Physics of Medical Imaging, 72583P (14 March 2009); doi: 10.1117/12.811326
Show Author Affiliations
J. Cabello, Univ. of Surrey (United Kingdom)
A. Holland, XCAM Ltd. (United Kingdom)
K. Holland, XCAM Ltd. (United Kingdom)
A. Bailey, Univ. of Surrey (United Kingdom)
I. Kitchen, Univ. of Surrey (United Kingdom)
K. Wells, Univ. of Surrey (United Kingdom)


Published in SPIE Proceedings Vol. 7258:
Medical Imaging 2009: Physics of Medical Imaging
Ehsan Samei; Jiang Hsieh, Editor(s)

© SPIE. Terms of Use
Back to Top