Share Email Print

Proceedings Paper

Caries assessment: establishing mathematical link of clinical and benchtop method
Author(s): Bennett T. Amaechi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is well established that the development of new technologies for early detection and quantitative monitoring of dental caries at its early stage could provide health and economic benefits ranging from timely preventive interventions to reduction of the time required for clinical trials of anti-caries agents. However, the new technologies currently used in clinical setting cannot assess and monitor caries using the actual mineral concentration within the lesion, while a laboratory-based microcomputed tomography (MCT) has been shown to possess this capability. Thus we envision the establishment of mathematical equations relating the measurements of each of the clinical technologies to that of MCT will enable the mineral concentration of lesions detected and assessed in clinical practice to be extrapolated from the equation, and this will facilitate preventitive care in dentistry to lower treatment cost. We utilize MCT and the two prominent clinical caries assessment devices (Quantitative Light-induced Fluorescence [QLF] and Diagnodent) to longitudinally monitor the development of caries in a continuous flow mixed-organisms biofilm model (artificial mouth), and then used the collected data to establish mathematical equation relating the measurements of each of the clinical technologies to that of MCT. A linear correlation was observed between the measurements of MicroCT and that of QLF and Diagnodent. Thus mineral density in a carious lesion detected and measured using QLF or Diagnodent can be extrapolated using the developed equation. This highlights the usefulness of MCT for monitoring the progress of an early caries being treated with therapeutic agents in clinical practice or trials.

Paper Details

Date Published: 18 February 2009
PDF: 6 pages
Proc. SPIE 7166, Optics in Bone Biology and Diagnostics, 71660E (18 February 2009); doi: 10.1117/12.811318
Show Author Affiliations
Bennett T. Amaechi, Univ. of Texas Health Science Ctr. at San Antonio (United States)

Published in SPIE Proceedings Vol. 7166:
Optics in Bone Biology and Diagnostics
Andreas Mandelis, Editor(s)

© SPIE. Terms of Use
Back to Top