Share Email Print

Proceedings Paper

Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance
Author(s): N. N. Ledentsov; J. A. Lott; V. A. Shchukin; H. Quast; F. Hopfer; G. Fiol; A. Mutig; P. Moser; T. Germann; A. Strittmatter; L. Y. Karachinsky; S. A. Blokhin; I. I. Novikov; A. M. Nadtochi; N. D. Zakharov; P. Werner; D. Bimberg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Presently VCSELs covering a significant spectral range (840-1300 nm) can be produced based on quantum dot (QD) active elements. Herein we report progress on selected QD based vertical-cavity surface-emitting lasers (VCSELs) suitable for high-speed operation. An open eye diagram at 20 Gb/s with error-free transmission (a bit-error-rate < 10-15) is achieved at 850 nm. The 850 nm QD VCSELs also achieve error-free 20 Gb/s single mode transmission operation through multimode fiber without the use of optical isolation. Our 980 nm-range QD VCSELs achieve error free transmission at 25 Gb/s at up to 150°C. These 980 nm devices operate in a temperature range of 25-85°C without current or modulation voltage adjustment. We anticipate that the primary application areas of QD VCSELs are those that require degradation-robust operation under extremely high current densities. Temperature stability at ultrahigh current densities, a forte of QDs, is needed for ultrahigh-speed (> 40 Gb/s) current-modulated VCSELs for a new generation of local and storage area networks. Finally we discuss aspects of QD vertical extended-cavity surface emitting lasers with ultra high power density per emitting surface for high power (material processing) and frequency conversion (display) applications.

Paper Details

Date Published: 17 February 2009
PDF: 12 pages
Proc. SPIE 7224, Quantum Dots, Particles, and Nanoclusters VI, 72240P (17 February 2009); doi: 10.1117/12.810192
Show Author Affiliations
N. N. Ledentsov, VI Systems GmbH (Germany)
J. A. Lott, VI Systems GmbH (Germany)
Technische Univ. Berlin (Germany)
V. A. Shchukin, VI Systems GmbH (Germany)
H. Quast, VI Systems GmbH (Germany)
F. Hopfer, Technische Univ. Berlin (Germany)
G. Fiol, Technische Univ. Berlin (Germany)
A. Mutig, Technische Univ. Berlin (Germany)
P. Moser, Technische Univ. Berlin (Germany)
T. Germann, Technische Univ. Berlin (Germany)
A. Strittmatter, Technische Univ. Berlin (Germany)
L. Y. Karachinsky, Ioffe Physical Technical Institute (Russian Federation)
St. Petersburg Physics and Technology Ctr. for Research and Education (Russian Federation)
S. A. Blokhin, St. Petersburg Physics and Technology Ctr. for Research and Education (Russian Federation)
I. I. Novikov, Ioffe Physical Technical Institute (Russian Federation)
A. M. Nadtochi, Ioffe Physical Technical Institute (Russian Federation)
N. D. Zakharov, Max-Planck-Institut für Mikrostrukturphysik (Germany)
P. Werner, Max-Planck-Institut für Mikrostrukturphysik (Germany)
D. Bimberg, Technische Univ. Berlin (Germany)

Published in SPIE Proceedings Vol. 7224:
Quantum Dots, Particles, and Nanoclusters VI
Kurt G. Eyink; Frank Szmulowicz; Diana L. Huffaker, Editor(s)

© SPIE. Terms of Use
Back to Top