Share Email Print
cover

Proceedings Paper

100GEthernet for aggregation and transport networks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Due to the doubling of the internet traffic every twelve month and upgrading existing optical metro-, regio- and long haul transport networks, the migration from existing networks toward high speed optical networks with channel data rates up to 100 Gbit/s/λ is one of the most important questions today and in the near future. Current WDM Systems in photonic networks are commonly operated at linerates of 2.5 and 10 Gbit/s/λ and major carriers already started the deployment of 40 Gbit/s/λ services. Due to the inherent increase of the bandwidth per channel, limitations due to linear and non-linear transmission impairments become stronger resulting in a highly increased complexity of link engineering, potentially increasing the operational expenditures (OPEX). Researchers, system vendors and -operators focus on investigations, targeting the relaxation of constraints for 100 Gbit/s transmission to find the most efficient upgrade strategies. The approaches towards increased robustness against signal distortions are the transmission of the 100 Gbit/s data signals via multiple fibers, wavelength, subcarriers or the introduction of more advanced modulation formats. Different modulation schemes and reduced baud rates show strongly different optical WDM transmission characteristics. The choice of the appropriate format does not only depend on the technical requirements, but also on economical considerations as an increased transmitter- and receiver-complexity will drive the transponder price. This article presents investigations on different approaches for the upgrade of existing metro-/ regio and long haul transport networks. The robustness against the main degrading physical effects and economy of scale are considered for different mitigation strategies.

Paper Details

Date Published: 26 January 2009
PDF: 9 pages
Proc. SPIE 7235, Optical Metro Networks and Short-Haul Systems, 72350B (26 January 2009); doi: 10.1117/12.809099
Show Author Affiliations
Sascha Vorbeck, Deutsche Telekom AG (Germany)
Malte Schneiders, Deutsche Telekom AG (Germany)
Werner Weiershausen, Deutsche Telekom AG (Germany)
Cornell Gonschior, Univ. of Applied Sciences (Germany)
Franko Küppers, College of Optical Sciences, The Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 7235:
Optical Metro Networks and Short-Haul Systems
Werner Weiershausen; Benjamin B. Dingel; Achyut Kumar Dutta; Atul K. Srivastava, Editor(s)

© SPIE. Terms of Use
Back to Top