Share Email Print

Proceedings Paper

Optimization of tapered fiber sample for laser cooling of solids
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The physical mechanism of radiation cooling by anti-Stokes fluorescence was originally proposed in 1929 and experimentally observed in solid materials in 1995 by Epstein's research team in ytterbium-doped ZBLANP glass. Some specific combinations of the ions, host materials, and the wavelength of the incident radiation can provide anti-Stokes interaction resulting in phonon absorption accompanied by the cooling of the host material. Although the optical cooling of the Yb3+-doped ZBLANP sample was already observed there are broad possibilities for its improvement to increase the temperature-drop of the sample by optimization of the geometrical parameters of the cooling sample. We propose a theoretical model for an optimized tapered fiber structure for use as a sample in anti-Stokes laser cooling of solids. This tapered fiber has a fluorozirconate glass ZBLANP with a core doped with Yb3+ or Tm3+ ions. As evident from the results of our work, the appropriate choice of the fiber core and the fiber cladding radii can significantly increase the temperature-drop of the sample for any fixed pump power. The value of the maximum of the temperature-drop of the sample increases with an increase in the pump power. The depletion of the pump power causes a temperature gradient along the length of the cooled sample.

Paper Details

Date Published: 10 February 2009
PDF: 11 pages
Proc. SPIE 7228, Laser Refrigeration of Solids II, 72280J (10 February 2009); doi: 10.1117/12.807868
Show Author Affiliations
Galina Nemova, Ecole Polytechnique de Montréal (Canada)
Raman Kashyap, Ecole Polytechnique de Montréal (Canada)

Published in SPIE Proceedings Vol. 7228:
Laser Refrigeration of Solids II
Richard I. Epstein; Mansoor Sheik-Bahae, Editor(s)

© SPIE. Terms of Use
Back to Top