Share Email Print

Proceedings Paper

People detection in crowded scenes using active contour models
Author(s): Oliver Sidla
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The detection of pedestrians in real-world scenes is a daunting task, especially in crowded situations. Our experience over the last years has shown that active shape models (ASM) can contribute significantly to a robust pedestrian detection system. The paper starts with an overview of shape model approaches, it then explains our approach which builds on top of Eigenshape models which have been trained using real-world data. These models are placed over candidate regions and matched to image gradients using a scoring function which integrates i) point distribution, ii) local gradient orientations iii) local image gradient strengths. A matching and shape model update process is iteratively applied in order to fit the flexible models to the local image content. The weights of the scoring function have a significant impact on the ASM performance. We analyze different settings of scoring weights for gradient magnitude, relative orientation differences, distance between model and gradient in an experiment which uses real-world data. Although for only one pedestrian model in an image computation time is low, the number of necessary processing cycles which is needed to track many people in crowded scenes can become the bottleneck in a real-time application. We describe the measures which have been taken in order to improve the speed of the ASM implementation and make it real-time capable.

Paper Details

Date Published: 19 January 2009
PDF: 9 pages
Proc. SPIE 7252, Intelligent Robots and Computer Vision XXVI: Algorithms and Techniques, 72520D (19 January 2009); doi: 10.1117/12.807720
Show Author Affiliations
Oliver Sidla, SLR Engineering (Austria)

Published in SPIE Proceedings Vol. 7252:
Intelligent Robots and Computer Vision XXVI: Algorithms and Techniques
David P. Casasent; Ernest L. Hall; Juha Röning, Editor(s)

© SPIE. Terms of Use
Back to Top