Share Email Print
cover

Proceedings Paper

The contact condition influence on stability and energy efficiency of quadruped robot
Author(s): Jingtao Lei; Tianmiao Wang; Feng Gao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quadruped robot has attribute of serial and parallel manipulator with multi-loop mechanism, with more DOF of each leg and intermittent contact with ground during walking, the trot gait of quadruped robot belongs to dynamic waking, compared to the crawl gait, the walking speed is higher, but the robot becomes unstable, it is difficult to keep dynamically stable walking. In this paper, we mainly analyze the condition for the quadruped robot to realize dynamically stable walking, establish centroid orbit equation based on ZMP (Zero Moment Point) stability theory, on the other hand , we study contact impact and friction influence on stability and energy efficiency. Because of the periodic contact between foots and ground, the contact impact and friction are considered to establish spring-damp nonlinear dynamics model. Robot need to be controlled to meet ZMP stability condition and contact constraint condition. Based on the virtual prototyping model, we study control algorithm considering contact condition, the contact compensator and friction compensator are adopted. The contact force and the influence of different contact conditions on the energy efficiency during whole gait cycle are obtained.

Paper Details

Date Published: 13 October 2008
PDF: 6 pages
Proc. SPIE 7129, Seventh International Symposium on Instrumentation and Control Technology: Optoelectronic Technology and Instruments, Control Theory and Automation, and Space Exploration, 71291E (13 October 2008); doi: 10.1117/12.807488
Show Author Affiliations
Jingtao Lei, Beijing Univ. of Aeronautics and Astronautics (China)
Tianmiao Wang, Beijing Univ. of Aeronautics and Astronautics (China)
Feng Gao, Beijing Univ. of Aeronautics and Astronautics (China)


Published in SPIE Proceedings Vol. 7129:
Seventh International Symposium on Instrumentation and Control Technology: Optoelectronic Technology and Instruments, Control Theory and Automation, and Space Exploration

© SPIE. Terms of Use
Back to Top