Share Email Print
cover

Proceedings Paper

Synchronous control for the hydraulic width system of edger rolling mill
Author(s): Shurong Ning; Zhuoyu Fan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Edger rolling mill is a load system in which the upper and the lower cylinder actuate a side vertical roller at the same time. Due to the linkage of the load, the output and control of two channels influence each other. Synchronic-control issue is discussed aim to the system with serious coupling. Neural network inverse as decoupling controller is proposed to account for the complicated process dynamics characterized by nonlinear, time-varying, uncertain and load couple properties. Firstly, the reversibility of the system is analyzed and the ANN inverse dynamic is constructed based on a feed forward and neural network structure with enlarged back propagation algorithm. Secondly, the system is changed into two pseudo-linear sub-system through connecting the controlled system and inverse dynamic model in series. Aim to two pseudo-linear sub-system pole assignments method is proposed to enhance the whole system performance. A series simulation was conducted and results showed the proposed controller does better than traditional PID not only on decoupling but also on the transient response, as well as robustness under vary conditions.

Paper Details

Date Published: 13 October 2008
PDF: 6 pages
Proc. SPIE 7129, Seventh International Symposium on Instrumentation and Control Technology: Optoelectronic Technology and Instruments, Control Theory and Automation, and Space Exploration, 712915 (13 October 2008); doi: 10.1117/12.807386
Show Author Affiliations
Shurong Ning, Shandong Univ. at Weihai (China)
Yanshan Univ. (China)
Zhuoyu Fan, Weihai Municipal Hospital (China)


Published in SPIE Proceedings Vol. 7129:
Seventh International Symposium on Instrumentation and Control Technology: Optoelectronic Technology and Instruments, Control Theory and Automation, and Space Exploration

© SPIE. Terms of Use
Back to Top