Share Email Print

Proceedings Paper

Pulsed Tm-doped fiber lasers for mid-IR frequency conversion
Author(s): Daniel Creeden; Peter A. Budni; Peter A. Ketteridge
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fiber lasers are an ideal pump source for nonlinear frequency conversion because they have the capability to generate short pulses with high peak-powers and excellent beam quality. Thulium-doped silica fibers allow for pulse generation and amplification in the 2-micron spectral band. This opens the door to a variety of nonlinear crystals, such as ZnGeP2 (ZGP) and orientation patterned GaAs (OPGaAs), which cannot be pumped by Yb- or Er-doped fiber laser directly due to high losses in the near-IR band. These crystals combine low losses with high nonlinearities and transparency for efficient nonlinear mid-IR converters. Using such nonlinear crystals and a pulsed Tm-doped master oscillator fiber amplifier (MOFA), we have demonstrated efficient mid-IR generation with watts of output power in the 3-5μm region. The Tm-doped MOFA is capable of generating from 10 to 100W of average output power at a variety of repetition rates (10kHz - >500kHz) and pulse widths (10ns - >100ns). Total mid-IR power is only limited by thermal effects in the nonlinear materials. The use of Tm-doped fiber-pumped OPOs shows the path toward compact, efficient, and lightweight mid-IR laser systems.

Paper Details

Date Published: 19 February 2009
PDF: 5 pages
Proc. SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications, 71950X (19 February 2009); doi: 10.1117/12.807208
Show Author Affiliations
Daniel Creeden, BAE Systems (United States)
Peter A. Budni, BAE Systems (United States)
Peter A. Ketteridge, BAE Systems (United States)

Published in SPIE Proceedings Vol. 7195:
Fiber Lasers VI: Technology, Systems, and Applications
Denis V. Gapontsev; Dahv A. Kliner; Jay W. Dawson; Kanishka Tankala, Editor(s)

© SPIE. Terms of Use
Back to Top