Share Email Print
cover

Proceedings Paper

Illuminant estimation and detection using near-infrared
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose that near-infrared data can actually prove remarkably useful in colour constancy, to estimate the incident illumination as well as providing to detect the location of different illuminants in a multiply lit scene. Looking at common illuminants spectral power distribution show that very strong differences exist between the near-infrared and visible bands, e.g., incandescent illumination peaks in the near-infrared while fluorescent sources are mostly confined to the visible band. We show that illuminants can be estimated by simply looking at the ratios of two images: a standard RGB image and a near-infrared only image. As the differences between illuminants are amplified in the near-infrared, this estimation proves to be more reliable than using only the visible band. Furthermore, in most multiple illumination situations one of the light will be predominantly near-infrared emitting (e.g., flash, incandescent) while the other will be mostly visible emitting (e.g., fluorescent, skylight). Using near-infrared and RGB image ratios allow us to accurately pinpoint the location of diverse illuminant and recover a lighting map.

Paper Details

Date Published: 19 January 2009
PDF: 11 pages
Proc. SPIE 7250, Digital Photography V, 72500E (19 January 2009); doi: 10.1117/12.806431
Show Author Affiliations
Clement Fredembach, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Sabine Susstrunk, Ecole Polytechnique Fédérale de Lausanne (Switzerland)


Published in SPIE Proceedings Vol. 7250:
Digital Photography V
Brian G. Rodricks; Sabine E. Süsstrunk, Editor(s)

© SPIE. Terms of Use
Back to Top