Share Email Print
cover

Proceedings Paper

Ray-tracing technique and imaging properties by a PC slab with neff=-1
Author(s): Y. Wang; Jiabi Chen; W. Qian
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, negative refractive media as the representation of new electromagnetic medium has become the front and the very popular researching field, and the production of the flat lens is one of its major applications. In our study, the imaging behaviors by two-dimensional photonic crystal slabs have been investigated systematically. We suggest a ray-tracing technique to discuss the action of photonic crystal slab with negative refraction. The propagation of electromagnetic waves in two-dimensional hexagonal lattice photonic crystal slab is investigated through dispersion characteristics analysis and numerical simulation of field patterns. Imaging and focusing with effective negative refractive index of -1 have been observed in these systems for both polarized waves, that is TE- and TM-polarized point source be considered simultaneously. Based on the exact finite-difference time-domain method to perform numerical simulation and physical analysis, we have demonstrated that the two-dimensional photonic crystal we designed can realize nearly perfect imaging with TM-polarized point source in the near field and far field, and the results are consistent with the ray-tracing technique quite well, while to TE-polarized point source the imaging is not perfect although it have neff=-1 in the same direction.

Paper Details

Date Published: 9 February 2009
PDF: 9 pages
Proc. SPIE 7158, 2008 International Conference on Optical Instruments and Technology: Microelectronic and Optoelectronic Devices and Integration, 715813 (9 February 2009); doi: 10.1117/12.805671
Show Author Affiliations
Y. Wang, Shanghai Univ. of Science and Technology (China)
Jianxi Normal Univ. (China)
Jiabi Chen, Shanghai Univ. of Science and Technology (China)
W. Qian, Shanghai Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 7158:
2008 International Conference on Optical Instruments and Technology: Microelectronic and Optoelectronic Devices and Integration

© SPIE. Terms of Use
Back to Top