Share Email Print
cover

Proceedings Paper

Flow-oriented dynamic assembly algorithm in TCP over OBS networks
Author(s): Shuping Peng; Zhengbin Li; Yongqi He; Anshi Xu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

OBS is envisioned as a promising infrastructure for the next generation optical network, and TCP is likely to be the dominant transport protocol in the next generation network. Therefore, it is necessary to evaluate the performance of TCP over OBS networks. The assembly at the ingress edge nodes will impact the network performance. There have been several Fixed Assembly Period (FAP) algorithms proposed. However, the assembly period in FAP is fixed, and it can not be adjusted according to the network condition. Moreover, in FAP, the packets from different TCP sources are assembled into one burst. In that case, if such a burst is dropped, the TCP windows of the corresponding sources will shrink and the throughput will be reduced. In this paper, we introduced a flow-oriented Dynamic Assembly Period (DAP) algorithm for TCP over OBS networks. Through comparing the previous and current burst lengths, DAP can track the variation of TCP window, and update the assembly period dynamically for the next assembly. The performance of DAP is evaluated over a single TCP connection and multiple connections, respectively. The simulation results show that DAP performs better than FAP at almost the whole range of burst dropping probability.

Paper Details

Date Published: 19 November 2008
PDF: 8 pages
Proc. SPIE 7137, Network Architectures, Management, and Applications VI, 71372T (19 November 2008); doi: 10.1117/12.803285
Show Author Affiliations
Shuping Peng, Peking Univ. (China)
Zhengbin Li, Peking Univ. (China)
Yongqi He, Peking Univ. (China)
Anshi Xu, Peking Univ. (China)


Published in SPIE Proceedings Vol. 7137:
Network Architectures, Management, and Applications VI
Weisheng Hu; Shoa-Kai Liu; Ken-ichi Sato; Lena Wosinska, Editor(s)

© SPIE. Terms of Use
Back to Top