Share Email Print

Proceedings Paper

Re-calibration of the NIST SRM 2059 master standard using traceable atomic force microscope metrology
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The current photomask linewidth Standard Reference Material (SRM) supplied by the National Institute of Standards and Technology (NIST), SRM 2059, is the fifth generation of such standards for mask metrology. An in house optical microscope tool developed at NIST, called the NIST ultra-violet (UV) microscope, was used in transmission mode to calibrate the SRM 2059 photomasks. Due to the limitations of available optical models for determining the edge response in the UV microscope, the tool was used in a comparator mode. One of the masks was selected as a master standard - and the features on this mask were calibrated using traceable critical dimension atomic force microscope (CD-AFM) dimensional metrology. The optical measurements were then used to determine the relative offsets between the widths on the master standard and individual masks for sale to customers. At the time of these measurements, however, the uncertainties in the CD-AFM reference metrology on the master standard were larger than can now be achieved because the NIST single crystal critical dimension reference material (SCCDRM) project had not been completed. Using our CD-AFM at NIST, we have performed new measurements on the SRM 2059 master standard. The new AFM results are in agreement with the prior measurements and have expanded uncertainties approximately one fourth of those of the earlier results for sub-micrometer features. When the optical comparator data for customers masks are reanalyzed using these new AFM results, we expect to reduce the combined reported uncertainties for the linewidths on the actual SRMs by at least 40 % for the nominal 0.25 μm features.

Paper Details

Date Published: 17 October 2008
PDF: 12 pages
Proc. SPIE 7122, Photomask Technology 2008, 71222Q (17 October 2008); doi: 10.1117/12.801923
Show Author Affiliations
Ronald Dixson, National Institute of Standards and Technology (United States)
James Potzick, National Institute of Standards and Technology (United States)
Ndubuisi G. Orji, National Institute of Standards and Technology (United States)

Published in SPIE Proceedings Vol. 7122:
Photomask Technology 2008
Hiroichi Kawahira; Larry S. Zurbrick, Editor(s)

© SPIE. Terms of Use
Back to Top