Share Email Print

Proceedings Paper

Dye molecular arrangement based on hybridization of DNA
Author(s): Yuichi Ohya
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

DNA is one of the best candidates as building blocks for bottom-up approach to nanometer size architecture in nanotechnology. In natural photosynthetic system, the arrangement of porphyrin derivative with regulated distances, orders and orientations provide an efficient photon-energy collecting and transmittion. Sequential arrangement of chromophore (dye molecule) should therefore be a good model of artificial photosynthetic and photo-energy transmission systems. Sequential arrangements of three kinds of chromophores separated by regulated distances equaling approximately one pitch of the DNA duplex (3.4 nm) in non-covalent molecular assembly systems are constructed using chromophore/oligo-DNA conjugates. Vectorial photo-energy transmission along the DNA helix axis by fluorescence resonance energy transfer (FRET) in a sequential chromophore array was observed by fluorescence spectra measurements and analyzed by time-resolved fluorescence spectroscopy measurements using a femtosecond pulse laser system.

Paper Details

Date Published: 9 September 2008
PDF: 13 pages
Proc. SPIE 7040, Nanobiosystems: Processing, Characterization, and Applications, 70400G (9 September 2008); doi: 10.1117/12.801489
Show Author Affiliations
Yuichi Ohya, Kansai Univ. (Japan)

Published in SPIE Proceedings Vol. 7040:
Nanobiosystems: Processing, Characterization, and Applications
Emily M. Heckman; Thokchom Birendra Singh; Junichi Yoshida, Editor(s)

© SPIE. Terms of Use
Back to Top