Share Email Print

Proceedings Paper

The Boreas concept for imaging polar winds from the Iridium-NEXT constellation
Author(s): Dennis Chesters; Lars Peter Riishojgaard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Iridium communications satellite constellation is a swarm of 66 LEO satellites in 6 pole-crossing orbits. Iridium LLC plans a NEXT generation to be launched 2013-16, and has invited secondary "bolt and go" payloads from Earthobserving agencies. A swarm of infrared imagers on Iridium-NEXT could track water vapor and clouds to estimate the unobserved winds above the 55-60 degree latitude limit of geosynchronous satellite imagery. This kind of polar overpass data has been demonstrated to significantly improve medium-range weather forecasts by tracking water vapor features at 6.7 microns in successive images near the pole from NASA's MODIS instruments. A "Boreas" instrument design is proposed for a push-broom imager combining two miniature sensors: uncooled microbolometric cameras gathering 4- band infrared radiometry, and small star trackers providing attitude information. An autonomous instrument package has been designed with low mass, power, and data rate. The "Boreas" instrument would use the Iridium constellation itself to relay the raw imagery from 3 successive images to ground stations that would navigate the data and extract wind vectors. Wind vectors could be generated automatically for the polar caps every few hours, and delivered for assimilation into numerical weather models during Iridium-NEXT operations, during 2016-2030.

Paper Details

Date Published: 25 August 2008
PDF: 8 pages
Proc. SPIE 7087, Remote Sensing System Engineering, 70870P (25 August 2008); doi: 10.1117/12.800767
Show Author Affiliations
Dennis Chesters, NASA Goddard Space Flight Ctr. (United States)
Lars Peter Riishojgaard, Joint Ctr. for Satellite Data Assimilation (United States)

Published in SPIE Proceedings Vol. 7087:
Remote Sensing System Engineering
Philip E. Ardanuy; Jeffery J. Puschell, Editor(s)

© SPIE. Terms of Use
Back to Top