Share Email Print
cover

Proceedings Paper

Ultrafine measurements of the thermal shift of Fabry-Perot resonances
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The wavelengths associated to the transmission peaks of a Fabry-Perot etalon are directly connected with its optical thickness. As a consequence, any change in the physical thickness or the refractive index of the cavity has a direct influence on the value of these specific wavelengths. This property can be used to determine the thermal characteristics, like the coefficient of thermal expansion or the thermo-optic coefficient, of some materials. However, to be efficient, this method needs a very high accuracy in the determination of these resonant wavelengths. We developed a dedicated measurement set-up, combining a tunable laser source around 850 nm and a high precision wavelength meter to determine with accuracy better than 0.2 pm the resonant wavelengths of a Fabry-Perot etalon. We use a temperature stabilized chamber to avoid temperature fluctuations or, on the contrary, to apply a deterministic temperature change at the cavity level. We describe the structure of our bench and present the results obtained on BK7 windows as well as on an optically contacted ULE Fabry-Perot with silver coatings.

Paper Details

Date Published: 25 September 2008
PDF: 9 pages
Proc. SPIE 7102, Optical Fabrication, Testing, and Metrology III, 71020Y (25 September 2008); doi: 10.1117/12.797710
Show Author Affiliations
S. Michel, Institut Fresnel, CNRS (France)
F. Lemarquis, Institut Fresnel, CNRS (France)
M. Lequime, Institut Fresnel, CNRS (France)


Published in SPIE Proceedings Vol. 7102:
Optical Fabrication, Testing, and Metrology III
Angela Duparré; Roland Geyl, Editor(s)

© SPIE. Terms of Use
Back to Top