Share Email Print
cover

Proceedings Paper

London force and energy transportation between interfacial surfaces
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

With appropriately selected optical frequencies, pulses of radiation propagating through a system of chemically distinct and organized components can produce areas of spatially selective excitation. This paper focuses on a system in which there are two absorptive components, each one represented by surface adsorbates arrayed on a pair of juxtaposed interfaces. The adsorbates are chosen to be chemically distinct from the material of the underlying surface. On promotion of any adsorbate molecule to an electronic excited state, its local electronic environment is duly modified, and its London interaction with nearest neighbor molecules becomes accommodated to the new potential energy landscape. If the absorbed energy then transfers to a neighboring adsorbate of another species, so that the latter acquires the excitation, the local electronic environment changes and compensating motion can be expected to occur. Physically, this is achieved through a mechanism of photon absorption and emission by molecular pairs, and by the engagement of resonance transfer of energy between them. This paper presents a detailed analysis of the possibility of optically effecting such modifications to the London force between neutral adsorbates, based on quantum electrodynamics (QED). Thus, a precise link is established between the transfer of excitation and ensuing mechanical effects.

Paper Details

Date Published: 21 August 2008
PDF: 8 pages
Proc. SPIE 7034, Physical Chemistry of Interfaces and Nanomaterials VII, 703408 (21 August 2008); doi: 10.1117/12.796083
Show Author Affiliations
David S. Bradshaw, Univ. of East Anglia (United Kingdom)
Jamie M. Leeder, Univ. of East Anglia (United Kingdom)
Justo Rodríguez, Univ. of East Anglia (United Kingdom)
David L. Andrews, Univ. of East Anglia (United Kingdom)


Published in SPIE Proceedings Vol. 7034:
Physical Chemistry of Interfaces and Nanomaterials VII
Garry Rumbles; Oliver L. A. Monti, Editor(s)

© SPIE. Terms of Use
Back to Top