Share Email Print
cover

Proceedings Paper

Distance and molecular weight dependence of surface enhanced fluorescence in conjugated polymer thin films
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photoluminescence (PL) of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) in the presence of Silver nanoparticles (NP) is studied. The purpose of this research is to understand the PL distance dependence of plasmon-polymer separation and a correlation between the surface enhanced fluorescence (SEF) and polymer molecular weight. Distinct peaks in PL are found for plasmon-polymer separations ranging from near the far field to the near field, under 100 nm. Extinction of the devices shows that changes in absorption cannot explain all enhancement in PL and suggests that a modification of the radiative lifetime is modified. The dependence of the photoluminescence of MEH-PPV on molecular weight shows variation but overall suggests chain length does not affect film quenching. This is largely attributed to the large polydispersity of the polymer materials used.

Paper Details

Date Published: 26 August 2008
PDF: 8 pages
Proc. SPIE 7032, Plasmonics: Metallic Nanostructures and Their Optical Properties VI, 70320U (26 August 2008); doi: 10.1117/12.795772
Show Author Affiliations
Michael S. Griffo, Univ. of California, Santa Cruz (United States)
Sue A. Carter, Univ. of California, Santa Cruz (United States)


Published in SPIE Proceedings Vol. 7032:
Plasmonics: Metallic Nanostructures and Their Optical Properties VI
Mark I. Stockman, Editor(s)

© SPIE. Terms of Use
Back to Top