Share Email Print
cover

Proceedings Paper

Biologically inspired optics: analog semiconductor model of the beetle exoskeleton
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Evolution in nature has produced through adaptation a wide variety of distinctive optical structures in many life forms. For example, pigment differs greatly from the observed color of most beetles because their exoskeletons contain multilayer coatings. The green beetle is disguised in a surrounding leaf by having a comparable reflection spectrum as the leaves. The Manuka and June beetle have a concave structure where light incident at any angle on the concave structures produce matching reflection spectra. In this work, semiconductor processing methods were used to duplicate the structure of the beetle exoskeleton. This was achieved by combining analog lithography with a multilayer deposition process. The artificial exoskeleton, 3D concave multilayer structure, demonstrates a wide field of view with a unique spectral response. Studying and replicating these biologically inspired nanostructures may lead to new knowledge for fabrication and design of new and novel nano-photonic devices, as well as provide valuable insight to how such phenomenon is exploited.

Paper Details

Date Published: 11 August 2008
PDF: 8 pages
Proc. SPIE 7057, The Nature of Light: Light in Nature II, 705707 (11 August 2008); doi: 10.1117/12.794313
Show Author Affiliations
Kaia Buhl, The Univ. of North Carolina at Charlotte (United States)
Zachary Roth, The Univ. of North Carolina at Charlotte (United States)
Pradeep Srinivasan, College of Optics and Photonics, Univ. of Central Florida (United States)
Raymond Rumpf, Prime Research (United States)
Eric Johnson, The Univ. of North Carolina at Charlotte (United States)


Published in SPIE Proceedings Vol. 7057:
The Nature of Light: Light in Nature II
Katherine Creath, Editor(s)

© SPIE. Terms of Use
Back to Top