Share Email Print

Proceedings Paper

Remote triggering of high voltage systems by laser-induced plasmas
Author(s): N. J. West; I. R. Jandrell; A. Forbes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The aim of this paper is to compare the electrical performance of an orthogonally with a coaxially laser-triggered spark gap. Each of these two gaps has its own advantages and disadvantages. At the same time, a Rogowski profile spark gap was investigated in terms of its orthogonally laser-triggered performance. It was found that the Nd:YAG laser used (1 064 nm, 800 mJ) was able to reduced the breakdown voltage of a 50 mm gap by 70% from 135 kV to about 40 kV. The position of the laser-induced plasma was found to play a significant role in the breakdown process - best results being obtained when the laser was focused in the centre of the gap. Finally, the shape of the laser-induced arc is dependant on the applied electric field. When the field is low, the arc tends to avoid the laser-induced plasma thus exhibiting a very anomalous behaviour. When the field is increased, the arc tends to attach itself to the plasma as expected.

Paper Details

Date Published: 3 September 2008
PDF: 10 pages
Proc. SPIE 7070, Optical Technologies for Arming, Safing, Fuzing, and Firing IV, 70700I (3 September 2008); doi: 10.1117/12.794083
Show Author Affiliations
N. J. West, Univ. of the Witwatersrand (South Africa)
I. R. Jandrell, Univ. of the Witwatersrand (South Africa)
A. Forbes, CSIR/NLC (South Africa)
Univ. of KwaZulu-Natal (South Africa)

Published in SPIE Proceedings Vol. 7070:
Optical Technologies for Arming, Safing, Fuzing, and Firing IV
Fred M. Dickey; Richard A. Beyer, Editor(s)

© SPIE. Terms of Use
Back to Top