Share Email Print
cover

Proceedings Paper

Alignment of two mirror astronomical telescopes (the astigmatic component)
Author(s): Tobias Schmid; Kevin Thompson; Jannick Rolland
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The effects of alignment perturbations on the aberration fields of two mirror astronomical telescopes are discussed. It is demonstrated that expressions describing alignment induced field-linear astigmatism, published by McLeod based on the work of Schroeder, can be obtained using nodal aberration theory. Rather than merely providing a different derivation for alignment induced astigmatism, it is shown that nodal theory can provide several insights that are significant for the development of effective alignment techniques. In the example of a specific telescope sited on Mt. Hopkins (Ritchey- Chretien), two approaches to identify misalignments of the secondary mirror are demonstrated. One approach utilizes the eccentricity of defocused star images and their orientation angles to calculate the misalignment of the secondary mirror after axial coma is removed. A second approach based on the location of the two zeros of the astigmatic aberration field is then shown to give equivalent results, but at the same time ensuring a complete model of all possible effects of misalignment on the performance of the telescope.

Paper Details

Date Published: 7 July 2008
PDF: 12 pages
Proc. SPIE 7017, Modeling, Systems Engineering, and Project Management for Astronomy III, 70170C (7 July 2008); doi: 10.1117/12.791263
Show Author Affiliations
Tobias Schmid, The College of Optics and Photonics, Univ. of Central Florida (United States)
Kevin Thompson, Optical Research Associates (United States)
Jannick Rolland, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 7017:
Modeling, Systems Engineering, and Project Management for Astronomy III
George Z. Angeli; Martin J. Cullum, Editor(s)

© SPIE. Terms of Use
Back to Top