Share Email Print
cover

Proceedings Paper

Stable flexure mounting of a MEMS deformable mirror for the GPI Planet Imager
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Small deformable mirrors (DMs) produced using microelectromechanical systems (MEMS) techniques have been used in thermally stable, bench-top laboratory environments. With advances in MEMS DM technology, a variety of field applications are becoming more common, such as the Gemini Planet Imager's (GPI) adaptive optics system. Instruments at the Gemini Observatory operate in conditions where fluctuating ambient temperature, varying gravity orientations and humidity and dust can have a significant affect on DM performance. As such, it is crucial that the mechanical design of the MEMS DM be tailored to the environment. GPI's approach has been to mount the MEMS DM using high performance optical mounting techniques rather than a typical laboratory set-up. This paper discusses the design of the opto-mechanical mounting scheme for a 4096 actuator MEMS DM, developed by Boston Micromachines Corporation for use in the GPI adaptive optics system. Flexures have been incorporated into the DM mount to reduce deformations on the optical surface due to thermal fluctuations. These flexures have also been sized to maintain alignment under varying gravity vector orientations. Finally, a system for environmentally sealing the mirror has been designed to prevent degradation due to humidity effects. A plan for testing the mechanical mount to ensure that it meets GPI's performance and environmental requirements is also presented.

Paper Details

Date Published: 23 July 2008
PDF: 8 pages
Proc. SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, 70181F (23 July 2008); doi: 10.1117/12.789408
Show Author Affiliations
Alexis Hill, National Research Council Canada, Herzberg Institute of Astrophysics (Canada)
Darren Erickson, National Research Council Canada, Herzberg Institute of Astrophysics (Canada)
Joeleff Fitzsimmons, National Research Council Canada, Herzberg Institute of Astrophysics (Canada)
Paul Bierden, Boston Micromachines Corp. (United States)
Steven Cornelissen, Boston Micromachines Corp. (United States)
Dave Palmer, Lawrence Livermore National Labs. (United States)


Published in SPIE Proceedings Vol. 7018:
Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation
Eli Atad-Ettedgui; Dietrich Lemke, Editor(s)

© SPIE. Terms of Use
Back to Top