Share Email Print

Proceedings Paper

CALISTO: the Cryogenic Aperture Large Infrared Space Telescope Observatory
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

CALISTO, the Cryogenic Aperture Large Infrared Space Telescope Observatory, will enable extraordinarily high sensitivity far-infrared continuum and moderate (R ~ 1000) resolution spectroscopic observations at wavelengths from ~30µm to ~300 μm - the wavelengths between those accessible by JWST and future ground based facilities. CALISTO's observations will provide vital information about a wide range of important astronomical questions including (1) the first stars and initial heavy element production in the universe; (2) structures in the universe traced by H2 emission; (3) the evolution of galaxies and the star formation within them (4) the formation of planetary systems through observations of protostellar and debris disks; (5) the outermost portions of our solar system through observations of Trans-Neptunian Objects (TNOs) and the Oort cloud. With optics cooled to below 5 K, the photon fluctuations from the astronomical background (Zodiacal, Galactic, and extragalactic) exceed those from the telescope. Detectors with a noise equivalent power below that set by the background will make possible astronomical-background-limited sensitivity through the submillimeter/far-infrared region. CALISTO builds on studies for the SAFIR (Single Aperture Far Infrared) telescope mission, employing a 4m x 6m off-axis Gregorian telescope which has a simple deployment using an Atlas V launch vehicle. The unblocked telescope with a cold stop has minimal sidelobes and scattering. The clean beam will allow astronomical background limited observations over a large fraction of the sky, which is what is required to achieve CALISTO's exciting science goals. The maximum angular resolution varies from 1.2" at 30 µm to 12" at 300 μm. The 5σ 1 hr detectable fluxes are ▵S(dν/ν = 1.0) = 2.2x10-20 Wm-2, and ▵S(dν/ν = 0.001) = 6.2x10-22 Wm-2. The 8 beams per source confusion limit at 70 μm is estimated to be 5 μJy. We discuss CALISTO optics, performance, instrument complement, and mission design, and give an overview of key science goals and required technology development to enable this promising far IR/submm mission.

Paper Details

Date Published: 12 July 2008
PDF: 16 pages
Proc. SPIE 7010, Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter, 701020 (12 July 2008); doi: 10.1117/12.788412
Show Author Affiliations
Paul F. Goldsmith, Jet Propulsion Lab. (United States)
Matt Bradford, Jet Propulsion Lab. (United States)
Mark Dragovan, Jet Propulsion Lab. (United States)
Chris Paine, Jet Propulsion Lab. (United States)
Celeste Satter, Jet Propulsion Lab. (United States)
Bill Langer, Jet Propulsion Lab. (United States)
Harold Yorke, Jet Propulsion Lab. (United States)
Kevin Huffenberger, Jet Propulsion Lab. (United States)
Dominic Benford, NASA Goddard Space Flight Ctr. (United States)
Dan Lester, Univ. of Texas, Austin (United States)

Published in SPIE Proceedings Vol. 7010:
Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter
Jacobus M. Oschmann; Mattheus W. M. de Graauw; Howard A. MacEwen, Editor(s)

© SPIE. Terms of Use
Back to Top