Share Email Print
cover

Proceedings Paper

High-energy sky observation by two small satellites using formation flight (FFAST)
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We are planning to have a "formation flight all sky telescope"~(FFAST) that will cover a large sky area in relatively high energy X-ray. In particular, it will focus on the energy range above 10 keV. It consists of two small satellites that will go in a formation flight. One is an X-ray telescope satellite and the other is a detector satellite. Two satellites will be simultaneously launched by a single rocket vehicle into a low earth orbit. They are in a formation flight with a separation of 20m±10cm. The observation direction is determined by the two satellites. Since two satellites are put into Keplerian orbit, the observation direction is scanning the sky rather than pointing to a fixed direction. The X-ray telescope satellite carries one super-mirror covering the energy range up to 80 keV. The telescope is 45-cm diameter and its focal length is 20m. The telescope is a "super mirror" ~that has a multi-layer coating covering the energy range up to 80 keV. The effective area is about 500cm2 at low energy and 200cm2 at 70 keV. The mirror system is a thin foil mirror that is developing at Nagoya University that is being developed. The PSF of the mirror will be about 1-2 arcmin. The satellite is equipped with an attitude control system using momentum wheel. It will keep the satellite such that the optical axis of the mirror is pointing to the detector satellite. The other is a detector satellite that carries an SDCCD system. The SDCCD is a CCD with a scintillator that is directly attached to the CCD. The CCD chip is fully depleted which can be a back-illuminated CCD. The scintillator is attached to the CCD at back side so that it has high detection efficiency for visible photons generated inside the scintillator. The X-ray enters into the CCD at front side. Therefore, low energy X-rays (below 10 keV) can be photo-absorbed in the depletion layer of the CCD while high energy X-rays will be absorbed in the scintillator that will emit visible photons The visible photons can be detected by the CCD. Depletion layer events usually form small charge spread while scintillator events usually form large charge spread. These events generate charge spread in a symmetric form with different size. On the contrary, charged particles leave an elongated charge spread that can be distinguished from X-ray events by pattern recognition. This project, Formation Flight All Sky Telescope (FFAST), will scan a large sky area at hard X-ray region.

Paper Details

Date Published: 15 July 2008
PDF: 8 pages
Proc. SPIE 7011, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 70112D (15 July 2008); doi: 10.1117/12.788135
Show Author Affiliations
Hiroshi Tsunemi, Osaka Univ. (Japan)
Kiyoshi Hayashida, Osaka Univ. (Japan)
Hideyo Kunieda, Nagoya Univ. (Japan)
Yasushi Ogasaka, Nagoya Univ. (Japan)
Masayuki Itoh, Kobe Univ. (Japan)
Masanobu Ozaki, Institute of Space and Aeronautical Science (Japan)
Isao Kawano, Tsukuba Space Ctr. (Japan)


Published in SPIE Proceedings Vol. 7011:
Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray
Martin J. L. Turner; Kathryn A. Flanagan, Editor(s)

© SPIE. Terms of Use
Back to Top