Share Email Print

Proceedings Paper

Optimal analysis for segmented mirror capture and alignment in space optics system
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A great deal segmented mirror errors consisting of piston and tip-tilt exist when space large aperture segmented optics system deploys. These errors will result in the departure of segmented mirrors images from the view. For that, proper scanning function should be adopted to control actuators rotating the segmented mirror, so that the images of segmented mirror can be put into the view and placed in the ideal position. In my paper, the scanning functions such as screw-type, rose-type, and helianthus-type and so on are analyzed and discussed. And the optimal scanning function principle based on capturing images by the fastest velocity is put forward. After capturing, each outer segmented mirror should be brought back into alignment with the central segment. In my paper, the central and outer segments with surface errors have the different figure, a new way to control the alignment accuracy is present, which can decrease the bad effects from mirror surface and position errors effectively. As a sample, a simulation experiment is carried to study the characteristics of different scanning functions and the effects of mirror surface and position errors on alignment accuracy. In simulation experiment, the piston and tip-tilt errors scale and the ideal position of segmented mirror are given, the capture and alignment process is realized by utilizing the improved optics design software ZEMAX, the optimal scanning function and the alignment accuracy is determined.

Paper Details

Date Published: 12 July 2008
PDF: 10 pages
Proc. SPIE 7010, Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter, 70104G (12 July 2008); doi: 10.1117/12.787723
Show Author Affiliations
Xiaofang Zhang, Beijing Institute of Technology (China)
Xin Yu, Beijing Institute of Technology (China)
Xia Wang, Beijing Institute of Technology (China)
Lei Zhao, Beijing Institute of Technology (China)

Published in SPIE Proceedings Vol. 7010:
Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter
Jacobus M. Oschmann; Mattheus W. M. de Graauw; Howard A. MacEwen, Editor(s)

© SPIE. Terms of Use
Back to Top