Share Email Print

Proceedings Paper

Reactive atom plasma (RAP) processing of mirrors for astronomy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Modern day telescopes for astronomy have very complex requirements. Both ground and space based telescopes are getting much larger placing significant productivity requirements on the manufacturing processes employed. Conventional manufacturing paradigms involving mechanical abrasion have limitations related primarily to the material removal mechanisms employed. Reactive Atom Plasma (RAPTM) processing is a sub-aperture, non-contact, deterministic figuring technology performed at atmospheric pressures. The process has high material removal rates, and given the non-contact and atmospheric nature lends itself very well to scaling up for large aperture mirrors/segments. The process also benefits from its ability to simultaneously remove sub-surface damage (SSD) while imparting the desired figure to the surface. Developments are under way currently to scale the process up towards larger clear apertures while being able to figure in high spatial frequency features.

Paper Details

Date Published: 23 July 2008
PDF: 12 pages
Proc. SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, 701809 (23 July 2008); doi: 10.1117/12.786991
Show Author Affiliations
Pradeep K. Subrahmanyan, RAPT Industries, Inc. (United States)
George Gardopée, RAPT Industries, Inc. (United States)

Published in SPIE Proceedings Vol. 7018:
Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation
Eli Atad-Ettedgui; Dietrich Lemke, Editor(s)

© SPIE. Terms of Use
Back to Top