Share Email Print
cover

Proceedings Paper

A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

Paper Details

Date Published: 16 May 2008
PDF: 4 pages
Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, 70045Y (16 May 2008); doi: 10.1117/12.786904
Show Author Affiliations
Paul Vernon Jansz, Edith Cowan Univ. (Australia)
Graham Wild, Edith Cowan Univ. (Australia)
Steven Hinckley, Edith Cowan Univ. (Australia)


Published in SPIE Proceedings Vol. 7004:
19th International Conference on Optical Fibre Sensors

© SPIE. Terms of Use
Back to Top