Share Email Print

Proceedings Paper

Research and development of service robot platform based on artificial psychology
Author(s): Xueyuan Zhang; Zhiliang Wang; Fenhua Wang; Masatake Nagai
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

Paper Details

Date Published: 9 January 2008
PDF: 6 pages
Proc. SPIE 6794, ICMIT 2007: Mechatronics, MEMS, and Smart Materials, 67942T (9 January 2008); doi: 10.1117/12.784521
Show Author Affiliations
Xueyuan Zhang, Univ. of Science and Technology Beijing (China)
Zhiliang Wang, Univ. of Science and Technology Beijing (China)
Fenhua Wang, Univ. of Science and Technology Beijing (China)
Masatake Nagai, Teikyo Univ. (Japan)

Published in SPIE Proceedings Vol. 6794:
ICMIT 2007: Mechatronics, MEMS, and Smart Materials
Minoru Sasaki; Gisang Choi Sang; Zushu Li; Ryojun Ikeura; Hyungki Kim; Fangzheng Xue, Editor(s)

© SPIE. Terms of Use
Back to Top