Share Email Print
cover

Proceedings Paper

Study of robot landmark recognition with complex background
Author(s): Yuqing Huang; Jia Yang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

It's of great importance for assisting robot in path planning, position navigating and task performing by perceiving and recognising environment characteristic. To solve the problem of monocular-vision-oriented landmark recognition for mobile intelligent robot marching with complex background, a kind of nested region growing algorithm which fused with transcendental color information and based on current maximum convergence center is proposed, allowing invariance localization to changes in position, scale, rotation, jitters and weather conditions. Firstly, a novel experiment threshold based on RGB vision model is used for the first image segmentation, which allowing some objects and partial scenes with similar color to landmarks also are detected with landmarks together. Secondly, with current maximum convergence center on segmented image as each growing seed point, the above region growing algorithm accordingly starts to establish several Regions of Interest (ROI) orderly. According to shape characteristics, a quick and effectual contour analysis based on primitive element is applied in deciding whether current ROI could be reserved or deleted after each region growing, then each ROI is judged initially and positioned. When the position information as feedback is conveyed to the gray image, the whole landmarks are extracted accurately with the second segmentation on the local image that exclusive to landmark area. Finally, landmarks are recognised by Hopfield neural network. Results issued from experiments on a great number of images with both campus and urban district as background show the effectiveness of the proposed algorithm.

Paper Details

Date Published: 9 January 2008
PDF: 6 pages
Proc. SPIE 6794, ICMIT 2007: Mechatronics, MEMS, and Smart Materials, 67942U (9 January 2008); doi: 10.1117/12.784502
Show Author Affiliations
Yuqing Huang, Southwest Univ. of Science and Technology (China)
Jia Yang, Southwest Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 6794:
ICMIT 2007: Mechatronics, MEMS, and Smart Materials

© SPIE. Terms of Use
Back to Top