Share Email Print

Proceedings Paper

The design of service-adaptive engine for robot middleware
Author(s): BumHyeon Baek; YongSoon Choi; Hong Seong Park
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we propose a design of Service-Adaptive Engine for robot middleware. This middleware called the KOMoR (Korea Object-oriented Middleware of Robot) is a middleware for robot that composed of three layers (Service Layer, Network Adaptation Layer, Network Interface Layer). In particular, Service-Adaptive Engine in Service Layer is responsible for communication between distributed applications and provides a set of features that support development of realistic distributed applications for a robot. Also, it avoids unnecessary complexity, making the middleware easy to learn and to use. For writing application, both client and server consist of a mixture of application code, library code, and code generated from IDL definition called MIDL (Module Interface Definition Language). The Service-Adaptive Engine in SL contains the client-and server-side run-time support for remote communication. The generic part of the Service-Adaptive Engine (that is, the part that is independent of the specific types you have defined in MIDL) is accessed through the SL API. The proxy code is generated from MIDL definitions and, therefore specific to the types of objects and data you have defined in MIDL.

Paper Details

Date Published: 9 January 2008
PDF: 6 pages
Proc. SPIE 6794, ICMIT 2007: Mechatronics, MEMS, and Smart Materials, 679424 (9 January 2008); doi: 10.1117/12.784480
Show Author Affiliations
BumHyeon Baek, Kangwon National Univ. (South Korea)
YongSoon Choi, Kangwon National Univ. (South Korea)
Hong Seong Park, Kangwon National Univ. (South Korea)

Published in SPIE Proceedings Vol. 6794:
ICMIT 2007: Mechatronics, MEMS, and Smart Materials
Minoru Sasaki; Gisang Choi Sang; Zushu Li; Ryojun Ikeura; Hyungki Kim; Fangzheng Xue, Editor(s)

© SPIE. Terms of Use
Back to Top