Share Email Print
cover

Proceedings Paper

Gaussian model-based statistical matching for image enhancement and segmentation
Author(s): Yufeng Zheng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A Gaussian model-based statistical matching procedure is proposed for image enhancement and segmentation. Generally speaking, enhanced images are desired for visual analysis whereas segmented images are required for target recognition. A histogram matching procedure is used to enhance a given image. To perform histogram matching, two histograms are needed, an original histogram computed from the given image and a specified histogram to be matched to. For image enhancement, the specified histogram is a Gaussian model (mean & standard deviation) that can be estimated from a number of well-exposed images or properly processed images. Certainly the Gaussian model varies with the category of imagery. For image segmentation, N Gaussian models (means & standard deviations) are estimated from the original histogram of a given image. The number of Gaussian models (N) is decided by analyzing the original histogram. A statistical matching procedure is used to map the original histogram onto one of the Gaussian models defined by their means and standard deviations. Specifically, the mapped image can be computed by subtracting the mean of original image from the original image, scaling with the ratio of the standard deviation of Gaussian model to the standard deviation of original image and plus the mean of Gaussian model. The statistically mapped image is thresheld by using the mean of Gaussian model, which results one set of expected segments. The statistical matching plus thresholding procedure is repeated N times for N Gaussian models. Finally, all N sets of segments are fully obtained. The proposed image enhancement and segmentation procedure are validated with multi-sensor imagery.

Paper Details

Date Published: 24 March 2008
PDF: 11 pages
Proc. SPIE 6978, Visual Information Processing XVII, 697802 (24 March 2008); doi: 10.1117/12.784092
Show Author Affiliations
Yufeng Zheng, Alcorn State Univ. (United States)


Published in SPIE Proceedings Vol. 6978:
Visual Information Processing XVII
Zia-ur Rahman; Stephen E. Reichenbach; Mark Allen Neifeld, Editor(s)

© SPIE. Terms of Use
Back to Top