Share Email Print

Proceedings Paper

A novel feature extracting method of QRS complex classification for mobile ECG signals
Author(s): Lingyun Zhu; Dong Wang; Xianying Huang; Yue Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The conventional classification parameters of QRS complex suffer from larger activity rang of patients and lower signal to noise ratio in mobile cardiac telemonitoring system and can not meet the identification needs of ECG signal. Based on individual sinus heart rhythm template built with mobile ECG signals in time window, we present semblance index to extract the classification features of QRS complex precisely and expeditiously. Relative approximation r2 and absolute error r3 are used as estimating parameters of semblance between testing QRS complex and template. The evaluate parameters corresponding to QRS width and types are demonstrated to choose the proper index. The results show that 99.99 percent of the QRS complex for sinus and superventricular ECG signals can be distinguished through r2 but its average accurate ratio is only 46.16%. More than 97.84 percent of QRS complexes are identified using r3 but its accurate ratio to the sinus and superventricular is not better than r2. By the feature parameter of width, only 42.65 percent of QRS complexes are classified correctly, but its accurate ratio to the ventricular is superior to r2. To combine the respective superiority of three parameters, a nonlinear weighing computation of QRS width, r2 and r3 is introduced and the total classification accuracy up to 99.48% by combing indexes.

Paper Details

Date Published: 9 January 2008
PDF: 5 pages
Proc. SPIE 6794, ICMIT 2007: Mechatronics, MEMS, and Smart Materials, 67943M (9 January 2008); doi: 10.1117/12.783965
Show Author Affiliations
Lingyun Zhu, Chongqing Institute of Technology (China)
Dong Wang, Chongqing Institute of Technology (China)
Xianying Huang, Chongqing Institute of Technology (China)
Yue Wang, Chongqing Institute of Technology (China)

Published in SPIE Proceedings Vol. 6794:
ICMIT 2007: Mechatronics, MEMS, and Smart Materials
Minoru Sasaki; Gisang Choi Sang; Zushu Li; Ryojun Ikeura; Hyungki Kim; Fangzheng Xue, Editor(s)

© SPIE. Terms of Use
Back to Top