Share Email Print
cover

Proceedings Paper

Development of fault diagnosis system for transformer based on multi-class support vector machines
Author(s): Jian Cao; Suxiang Qian; Hongsheng Hu; Gongbiao Yan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The support vector machine (SVM) is an algorithm based on structure risk minimizing principle and having high generalization ability. It is strong to solve the problem with small sample, nonlinear and high dimension. The fundamental theory of DGA (Dissolved Gas Analysis, DGA) and fault characteristic of transformer is firstly researched in this paper, and then the disadvantages of traditional method of transformer fault diagnosis are analyzed, finally, a new fault diagnosis method using multi-class support vector machines (M-SVMs) based on DGA theory for transformer is put forward. Then the fault diagnosis model based on M-SVMs for transformer is established. At the same time, the fault diagnosis system based on M-SVMs for transformer is developed. The system can realize the acquisition of the dissolving gas in the transformer oil and data timely and low cost transmission by GPRS (General Packet Radio Service, GPRS). And it can identify out the transformer running state according to the acquisition data. The test results show that the method proposed has an excellent performance on correct ratio. And it can overcome the disadvantage of the traditional three-ratio method which lacks of fault coding and no fault types in the existent coding. Combining the wireless communication technology with the monitoring technology, the designed and developed system can greatly improve the real-time and continuity for the transformer' condition monitoring and fault diagnosis.

Paper Details

Date Published: 9 January 2008
PDF: 6 pages
Proc. SPIE 6794, ICMIT 2007: Mechatronics, MEMS, and Smart Materials, 679439 (9 January 2008); doi: 10.1117/12.783856
Show Author Affiliations
Jian Cao, Jiaxing Univ. (China)
Suxiang Qian, Jiaxing Univ. (China)
Hongsheng Hu, Jiaxing Univ. (China)
Gongbiao Yan, Zhejiang Univ. (China)


Published in SPIE Proceedings Vol. 6794:
ICMIT 2007: Mechatronics, MEMS, and Smart Materials

© SPIE. Terms of Use
Back to Top