Share Email Print
cover

Proceedings Paper

Argon (2P-1S) spectral lines measurement in dielectric barrier discharge (DBD) by optical emission spectroscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The variations of the intensity of argon (2P→1S) spectral lines with various gas mixing ratios in dielectric barrier discharge (DBD) in air/Ar and N2/Ar admixtures are studied. The relative intensity of Ar I I750.39nm/I763.51nm as a function of experiment conditions (pressure, applied voltage and frequency) in Ar discharge is also measured. In air/Ar and N2/Ar admixtures, it is observed that the higher levels of N2 molecules have quenching selectivity for Ar (2P→1S) spectral lines, and the relative intensity of Ar I I750.39nm/I763.51nm increases with increasing air or N2 concentration in two admixtures, respectively. Both Ar (2P→1S)spectral lines and the relative intensity of Ar I I750.39nm/I763.51nm in N2/Ar admixture are higher than that in air/Ar admixture under the same air and N2 concentration in two admixtures. The relative intensity of Ar I I750.39nm/I763.51nm increases from 0.81 to 1.73 when the concentration of air changes from 10% to 73%, but the relative intensity changes from 1.03 to 3.51 when the concentration of N2 increases from 10% to 73% in N2/Ar admixture at a applied voltage of 10kV, a frequency of 26kHz and an atmosphere pressure. Moreover, in Ar discharge, the results demonstrate that the pressure has great effect on the relative intensity of Ar I I750.39nm/I763.51nm, which decreases with increasing the pressure. But it changes slightly with the applied voltage and the frequency.

Paper Details

Date Published: 27 November 2007
PDF: 6 pages
Proc. SPIE 6723, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 67235J (27 November 2007); doi: 10.1117/12.783784
Show Author Affiliations
Lichun Li, Hebei Univ. (China)
Lifang Dong, Hebei Univ. (China)
Hongfang Wang, Hebei Univ. (China)
Fucheng Liu, Hebei Univ. (China)


Published in SPIE Proceedings Vol. 6723:
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Junhua Pan; James C. Wyant; Hexin Wang, Editor(s)

© SPIE. Terms of Use
Back to Top