Share Email Print
cover

Proceedings Paper

All-fiber acousto-optic intensity modulator using surface acoustic wave
Author(s): Kuanxin Yu; Wei An; Tao Liu; Shengming Li; Shiya He; Shuyang Hu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, a fiber coupled-mode equation between front-wave and back-wave of optical guided modes with micro disturbance is given from parameter interaction equation. Considering surface acoustic wave (SAW) as the micro disturbance, a coupled-wave equation group of SAW all-fiber acousto-optic (AO) effect is deduced. The equation group includes front-wave equation and back-wave equation. A back-wave efficiency formula is demonstrated through solving the equation group. It is proved, that the back-wave efficiency is directly proportional to power of the SAW under condition of weak AO interaction. Quartz crystal is considered as the best base crystal. It is because acoustic impedances of the quartz crystal and the fiber are equal approximately. According to form of SAW basic equations or Christofell equations the best SAW mode of the quartz is determined. All-fiber AO intensity modulator using SAW is designed and manufactured. Modulation curve of optic power of the back-wave vs power of electric signals driving the device is measured. The experimental results indicate, optic power of the back-wave is directly proportional to power of electric signals driving the device. The experimental results are consistent with the theory. Advantages of the device are smaller volumes, less energy consumes, less inset-losses and so on. Besides, it is easy to integration and can be used in optic fiber communication.

Paper Details

Date Published: 14 November 2007
PDF: 6 pages
Proc. SPIE 6722, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 672249 (14 November 2007); doi: 10.1117/12.783657
Show Author Affiliations
Kuanxin Yu, Beijing Univ. of Technology (China)
Wei An, Beijing Univ. of Technology (China)
Tao Liu, Beijing Univ. of Technology (China)
Shengming Li, Beijing Univ. of Technology (China)
Shiya He, Beijing Univ. of Technology (China)
Shuyang Hu, Beijing Univ. of Technology (China)


Published in SPIE Proceedings Vol. 6722:
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies

© SPIE. Terms of Use
Back to Top