Share Email Print
cover

Proceedings Paper

Laser scattering properties of rough spherical surfaces
Author(s): Chun-ping Yang; Jian Wu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An approximate model is developed to study the properties of laser scattering from a rough spherical surface based on a random facet model and the electromagnetic scattering theory. For actual spheres, for instance oilcan, its lateral correlation length is much longer than the incident laser wavelength, and its surface distribution is usually isotropic and conforms to Gaussian distribution. Hence, it is feasible to deal with scattering of the rough spherical surface with the random facet model. First, power scattered into a detective system can be denoted for every facet with the scattering model of a coarse plane corresponded to the isotropic Gaussian statistics. Second, total power received by the detective system should correspond to incoherent addition of power scattered into a far-field detector system by all facets. Here, an incident shadow function has been taken into account to exclude the contribution of the facets not being illuminated. Likewise, a scattering shadow function is introduced to exclude the contribution of the scattered light blocked by undulations of spherical surface. An unfolded factor has been taken into account in this model, too. Finally, to verify this model, the angular distribution of the scattering intensity in far field is calculated and analyzed under different cases. The results show that the scattering intensity is stronger in the backward than in other directions if the spherical surface is smooth, but if the spherical surface is rough to some extent, the incident laser power will be scattered to other direction and there is faint scattered intensity in forward direction concomitantly. We can use these properties to make remote sensing for spherical objects.

Paper Details

Date Published: 27 November 2007
PDF: 6 pages
Proc. SPIE 6723, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 67232V (27 November 2007); doi: 10.1117/12.783359
Show Author Affiliations
Chun-ping Yang, Univ. of Electronic Science and Technology of China (China)
Jian Wu, Univ. of Electronic Science and Technology of China (China)


Published in SPIE Proceedings Vol. 6723:
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Junhua Pan; James C. Wyant; Hexin Wang, Editor(s)

© SPIE. Terms of Use
Back to Top