Share Email Print
cover

Proceedings Paper

Comparison of ion post treatment and laser conditioning of thin films
Author(s): Dongping Zhang; Ping Fan; Xing-Min Cai; Jianda Shao; Zhengxiu Fan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Laser-induced damage of optical thin films is one of the main obstacles, which prevents laser technology from being developed toward high power. Many experimental results indicated that microdefect and absorption of films are the two major factors that influence laser induced damage threshold (LIDT). To reduce microdefect density and absorption, and improve LIDT of thin films, researchers have developed not only novel film deposition techniques, but also novel film post-treatment techniques. Though film deposition techniques have been highly developed, microdefect still remains to be the main limited factor of LIDT. Because of this, posttreatment techniques as a novel way to reduce defect density and improve LIDT has (been) attracted much attentions. One of the most frequently used posttreatment methods is laser conditioning and another is ion posttreatment. By comparing the treatment mechanism of two posttreatment techniques, it is easy to find their similarities and differences. Though laser conditioning is a classical posttreatment technique, its shortages such as low efficiency, rigorous requirement of equipment stability, and uncertain treatment results are inevitable. As a novel technique, ion posttreatment has great potential to improve LIDT of thin films. This technique not only has high treatment efficiency, but also has convenience and easily adjusted parameters. So it should be a promising posttreatment technique in improving LIDT of optical thin films.

Paper Details

Date Published: 14 November 2007
PDF: 5 pages
Proc. SPIE 6722, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 67221Q (14 November 2007); doi: 10.1117/12.783020
Show Author Affiliations
Dongping Zhang, Shenzhen Univ. (China)
Ping Fan, Shenzhen Univ. (China)
Xing-Min Cai, Shenzhen Univ. (China)
Jianda Shao, Shanghai Institute of Optics and Fine Mechanics (China)
Zhengxiu Fan, Shanghai Institute of Optics and Fine Mechanics (China)


Published in SPIE Proceedings Vol. 6722:
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies

© SPIE. Terms of Use
Back to Top