Share Email Print

Proceedings Paper

Methods to increase efficiency of laser therapy of oncologic diseases: methods, equipment, experiment
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The rapid development of quantum electronics and the advent of various types of lasers favored the formation of an independent line in medicine, namely, laser medicine In recent years devices based on semiconductor lasers have been introduced into medicine at a most rapid pace At present day this is connected with , that the essential improvement energy and spectral features has occurred in development semiconductor laser. The power of serial discrete near-IR semiconductor lasers has reached a level of 5 W and more, the spectral range has extended to 1.7...1.8 μm. Laser-optical information technologies and devices develop since the 70- years at the end of 20 century and are broadly used for treatment of oncologic diseases. Although such methods as photodynamic therapy (PDT), laser-induce thermotherapy (LITT), fluorescent diagnostics and spectrophotometry already more than 30 years are used for treatment and diagnostics of oncologic diseases, nevertheless, they are enough new methods and, as a rule, are used in large scientific centers and medical institutions. This is bound, first of all, with lack of information on modern method of cancer treatment, the absence of widely available laser procedures and corresponding devices in the polyclinics and even in district hospitals, as well as insufficient understanding of application areas, where laser methods has an advantage by comparison, for instance, with beam or chemotherapy. Presented in the article are new developed methods and results of designing equipment and software for their realization aimed at increase in efficiency of treatment of oncologic diseases as well as several clinical materials of the use of industrial models of the developed devices at medical institutions.

Paper Details

Date Published: 2 May 2008
PDF: 11 pages
Proc. SPIE 6991, Biophotonics: Photonic Solutions for Better Health Care, 69912I (2 May 2008); doi: 10.1117/12.782434
Show Author Affiliations
A. A. Mikov, POLYUS Research & Development Institute Federal State Unitary Enterprise (Russia)
V. N. Svirin, POLYUS Research & Development Institute Federal State Unitary Enterprise (Russia)

Published in SPIE Proceedings Vol. 6991:
Biophotonics: Photonic Solutions for Better Health Care
Jürgen Popp; Wolfgang Drexler; Valery V. Tuchin; Dennis L. Matthews, Editor(s)

© SPIE. Terms of Use
Back to Top