Share Email Print

Proceedings Paper

Recent developments in UV laser micromachining
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Stable, high energy excimer lasers providing pulsed output energies ranging from 100 mJ up to over 1000 mJ in the ultraviolet region with photon energies as high as 5 eV (248 nm), 6.3 eV (193 nm) or 7.9 eV (157 nm) lend maximum flexibility to laser microprocessing, since virtually every material is amenable to accurate, high resolution material ablation without subsequent cleaning. Due to the UV photons provided with no up-conversion required as direct output by excimer lasers, output powers of many hundred watts are easily achievable and are key to high throughput, and up-scaling capability of manufacturing processes. Most important for reproducible production results is a temporally and spatially stable behavior of consecutive laser pulses as well as utmost lateral homogeneity of the on-sample energy density (fluence). These requirements constitute the superiority of excimer lasers over other pulsed UV laser sources such as lamp-pumped Nd:YAG lasers. Pulse-to-pulse stabilities of less than 1 %, rms as easily provided by excimer laser systems which cannot be achieved with frequency converted Nd:YAG. Laser systems. In particular, the large flat-top excimer laser profile is well-suited for most efficient parallel processing of two and three dimensional microstructures. Spectral properties, temporal pulse and laser beam parameters of state of the art UV excimer lasers and beam delivery systems will be compared with frequency converted, flash-lamp pumped Nd:YAG lasers.

Paper Details

Date Published: 21 February 2008
PDF: 8 pages
Proc. SPIE 6874, High Energy/Average Power Lasers and Intense Beam Applications II, 68740K (21 February 2008); doi: 10.1117/12.781962
Show Author Affiliations
R. Delmdahl, Coherent GmbH (Germany)
Rainer Pätzel, Coherent GmbH (Germany)

Published in SPIE Proceedings Vol. 6874:
High Energy/Average Power Lasers and Intense Beam Applications II
Steven J. Davis; Michael C. Heaven; J. Thomas Schriempf, Editor(s)

© SPIE. Terms of Use
Back to Top