Share Email Print
cover

Proceedings Paper

On negative reflection in a bianisotropic medium
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The vast parameter space associated with bianisotropic mediums supports a host of complex electromagnetic behaviours. Planewave propagation in a bianisotropic medium is generally characterized by four independent wavevectors. We considered planewave propagation in a Faraday chiral medium (FCM), which is a particular bianisotropic medium that combines natural optical activity with Faraday rotation. FCMs may be theoretically conceptualized as metamaterials arising from the homogenization of isotropic chiral mediums with either magnetically biased ferrites or magnetically biased plasmas. Provided that the magnetoelectric coupling is sufficiently large, there are enhanced possibilities for negative-phase-velocity propagation and therefore negative refraction in FCMs. They can also give rise to the phenomenon of negative reflection. That is, an incident plane wave with positive phase velocity can result in a negatively reflected plane wave with negative phase velocity, as well as a positively reflected plane wave with positive phase velocity. Also, an incident plane wave with negative phase velocity can result in a negatively reflected plane wave with positive phase velocity, as well as a positively reflected plane wave with negative phase velocity.

Paper Details

Date Published: 6 May 2008
PDF: 5 pages
Proc. SPIE 6987, Metamaterials III, 69871X (6 May 2008); doi: 10.1117/12.780754
Show Author Affiliations
Tom G. Mackay, Univ. of Edinburgh (United Kingdom)
Akhlesh Lakhtakia, Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 6987:
Metamaterials III
Nigel P. Johnson; Ekmel Özbay; Nikolay I. Zheludev; Richard W. Ziolkowski, Editor(s)

© SPIE. Terms of Use
Back to Top