Share Email Print

Proceedings Paper

Development and characterization of a microheater array device for real-time DNA mutation detection
Author(s): Layne Williams; Murat Okandan; Alex Chagovetz; Steve Blair
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

Paper Details

Date Published: 30 April 2008
PDF: 8 pages
Proc. SPIE 6959, Micro (MEMS) and Nanotechnologies for Space, Defense, and Security II, 69590Y (30 April 2008); doi: 10.1117/12.777676
Show Author Affiliations
Layne Williams, Univ. of Utah (United States)
Murat Okandan, Sandia National Labs. (United States)
Alex Chagovetz, Univ. of Utah (United States)
Steve Blair, Univ. of Utah (United States)

Published in SPIE Proceedings Vol. 6959:
Micro (MEMS) and Nanotechnologies for Space, Defense, and Security II
Thomas George; Zhongyang Cheng, Editor(s)

© SPIE. Terms of Use
Back to Top