Share Email Print
cover

Proceedings Paper

A worldwide physics-based high spectral resolution atmospheric characterization and propagation package for UV to RF wavelengths
Author(s): Matthew J. Krizo; Salvatore J. Cusumano; Richard J. Bartell; Steven T. Fiorino; William F. Bailey; Rebecca L. Beauchamp; Michael A. Marciniak; Kenneth P. Moore
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Air Force Institute of Technology's Center for Directed Energy (AFIT/CDE) developed the High Energy Laser End-to-End Operational Simulation (HELEEOS) model in part to quantify the performance variance in laser propagation created by the natural environment during dynamic engagements. As such, HELEEOS includes a fast-calculating, first principles, worldwide surface-to-100 km, atmospheric propagation and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates and hydrometeors as they relate to line-by-line layer transmission, path and background radiance at wavelengths from the ultraviolet to radio frequencies. Physics-based cloud and precipitation characterizations are coupled with a probability of cloud free line-of-sight algorithm for all possible look angles. HELEEOS was developed under the sponsorship of the High Energy Laser Joint Technology Office. In the current paper an example of a unique high fidelity simulation of a bi-static, time-varying five band multispectral remote observation of laser energy delivered on a test object is presented. The multispectral example emphasizes atmospheric effects using HELEEOS, the interaction of the laser on target and the observed reflectance and subsequent hot spot generated. A model of a sensor suite located on the surface is included to collect the diffuse reflected in-band laser radiation and the emitted radiance of the hot spot in four separate and spatially offset MWIR and LWIR bands. Particular care is taken in modeling the bidirectional reflectivity distribution function (BRDF) of the laser/target interaction to account for both the coupling of energy into the target body and the changes in reflectance as a function of temperature. The architecture supports any platform-target-observer geometry, geographic location, season, and time of day; and it provides for correct contributions of the sky-earth background. The simulation accurately models the thermal response, kinetics, turbulence, base disturbance, diffraction, and signal-to-noise ratios.

Paper Details

Date Published: 5 May 2008
PDF: 12 pages
Proc. SPIE 6966, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, 696619 (5 May 2008); doi: 10.1117/12.777572
Show Author Affiliations
Matthew J. Krizo, Air Force Institute of Technology (United States)
Salvatore J. Cusumano, Air Force Institute of Technology (United States)
Richard J. Bartell, Air Force Institute of Technology (United States)
Steven T. Fiorino, Air Force Institute of Technology (United States)
William F. Bailey, Air Force Institute of Technology (United States)
Rebecca L. Beauchamp, Air Force Institute of Technology (United States)
Michael A. Marciniak, Air Force Institute of Technology (United States)
Kenneth P. Moore, Air Force Institute of Technology (United States)


Published in SPIE Proceedings Vol. 6966:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top