Share Email Print
cover

Proceedings Paper

Structured pedigree information for distributed fusion systems
Author(s): Pablo O. Arambel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the most critical challenges in distributed data fusion is the avoidance of information double counting (also called "data incest" or "rumor propagation"). This occurs when a node in a network incorporates information into an estimate - e.g. the position of an object - and the estimate is injected into the network. Other nodes fuse this estimate with their own estimates, and continue to propagate estimates through the network. When the first node receives a fused estimate from the network, it does not know if it already contains its own contributions or not. Since the correlation between its own estimate and the estimate received from the network is not known, the node can not fuse the estimates in an optimal way. If it assumes that both estimates are independent from each other, it unknowingly double counts the information that has already being used to obtain the two estimates. This leads to overoptimistic error covariance matrices. If the double-counting is not kept under control, it may lead to serious performance degradation. Double counting can be avoided by propagating uniquely tagged raw measurements; however, that forces each node to process all the measurements and precludes the propagation of derived information. Another approach is to fuse the information using the Covariance Intersection (CI) equations, which maintain consistent estimates irrespective of the cross-correlation among estimates. However, CI does not exploit pedigree information of any kind. In this paper we present an approach that propagates multiple covariance matrices, one for each uncorrelated source in the network. This is a way to compress the pedigree information and avoids the need to propagate raw measurements. The approach uses a generalized version of the Split CI to fuse different estimates with appropriate weights to guarantee the consistency of the estimates.

Paper Details

Date Published: 17 April 2008
PDF: 12 pages
Proc. SPIE 6968, Signal Processing, Sensor Fusion, and Target Recognition XVII, 69680X (17 April 2008); doi: 10.1117/12.777422
Show Author Affiliations
Pablo O. Arambel, BAE Systems (United States)


Published in SPIE Proceedings Vol. 6968:
Signal Processing, Sensor Fusion, and Target Recognition XVII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top