Share Email Print

Proceedings Paper

Edge feature extraction for ATR using the Helmholtz principle and level set methods
Author(s): Arjuna Flenner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Edge features are often used in computer vision for image exploitation algorithms. A method to extract edge features that is robust to contrast change, translation, rotation, noise and scale change is presented. This method consists of the following steps: decompose the image into it's level set shapes, smooth the shapes, locate sections of the shape borders that have nearly constant curvature, and locate a key point based on these curve sections. The level sets are found using the Fast Level Set Transform (FLST). An affine invariant smoothing technique was then applied to the level set shape borders to reduce pixel effects and noise, and an intrinsic scale was estimated from the level set borders. The final step was key point location and scale estimation using the Helmholtz principle. These key points were found to be more resilient to large scale changes than the SIFT key points.

Paper Details

Date Published: 14 April 2008
PDF: 12 pages
Proc. SPIE 6967, Automatic Target Recognition XVIII, 69670W (14 April 2008); doi: 10.1117/12.777393
Show Author Affiliations
Arjuna Flenner, NAVAIR (United States)

Published in SPIE Proceedings Vol. 6967:
Automatic Target Recognition XVIII
Firooz A. Sadjadi; Abhijit Mahalanobis, Editor(s)

© SPIE. Terms of Use
Back to Top