Share Email Print
cover

Proceedings Paper

Thermographic non-destructive testing using inductive thermal excitation
Author(s): Morteza Safai; Gary Georgeson; Kimberly Meredith
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes the utilization of induced radio frequency thermal excitation in conjunction with infrared (IR) imaging for the detection of discontinuities in embedded metal conductive mesh on composite structure. An electric current is inductively generated in the conductive media of the composite using a radio frequency coil held above the surface. As the generated current moves through the composite structure, any perturbation in the current flow caused by discontinuities in the grid or highly resistive areas becomes heated slightly above the surrounding. This small temperature variation is detected in real-time by means of an IR imaging system that includes an IR camera, a computer, and imaging software. The data is depicted as a thermogram on the computer monitor, and can be analyzed using specialized system software. From the detected thermal variations, one can determine electrical conductivity characteristics of the conductive composite layer.

Paper Details

Date Published: 8 April 2008
PDF: 9 pages
Proc. SPIE 6934, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2008, 69340M (8 April 2008); doi: 10.1117/12.777097
Show Author Affiliations
Morteza Safai, The Boeing Co. (United States)
Gary Georgeson, The Boeing Co. (United States)
Kimberly Meredith, The Boeing Co. (United States)


Published in SPIE Proceedings Vol. 6934:
Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2008
Peter J. Shull; H. Felix Wu; Aaron A. Diaz; Dietmar W. Vogel, Editor(s)

© SPIE. Terms of Use
Back to Top