Share Email Print

Proceedings Paper

Damage quantification using attenuation based signal processing for health monitoring in carbon fiber composites
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbon-fiber composites will increasingly be used in next generation air transportation vehicles. Therefore, it is critical to develop state awareness models that can accurately capture the damage states and predict remaining useful life based on current and future loading conditions. In the current research, a structural health monitoring (SHM) and prognosis framework is being developed for heterogeneous material systems. The objective of this paper is to present some of the experimental components of this work. In the experiments preformed, the use of a pitch catch method using piezoelectric transducers for both the actuator and sensor were employed for collecting information on the damage status. The focus of this work is to quantify damage within the sample by relating parameters in the sensor signal to damage intensity. Good correlation has been observed in several tests between damage level and wave attenuation. These results are confirmed using off-the-shelf NDE techniques.

Paper Details

Date Published: 10 April 2008
PDF: 8 pages
Proc. SPIE 6935, Health Monitoring of Structural and Biological Systems 2008, 69351Q (10 April 2008); doi: 10.1117/12.776472
Show Author Affiliations
Whitney Reynolds, Arizona State Univ. (United States)
Aditi Chattopadhyay, Arizona State Univ. (United States)

Published in SPIE Proceedings Vol. 6935:
Health Monitoring of Structural and Biological Systems 2008
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top