Share Email Print
cover

Proceedings Paper

Target detection from dual disparate sonar platforms using canonical correlations
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper a new coherence-based feature extraction method for sonar imagery generated from two disparate sonar systems is developed. Canonical correlation analysis (CCA) is employed to identify coherent information from co-registered regions of interest (ROI's) that contain target activities, while at the same time extract useful coherent features from both images. The extracted features can be used for simultaneous detection and classification of target and non-target objects in the sonar images. In this study, a side-scan sonar that provides high resolution images with good target definition and a broadband sonar that generates low resolution images, but with reduced background clutter. The optimum Neyman-Pearson detector will be presented and then extended to the dual sensor platform scenarios. Test results of the proposed methods on a dual sonar imagery data set provided by the Naval Surface Warfare Center (NSWC) Panama City, FL will be presented. This database contains co-registered pair of images over the same target field with varying degree of detection difficulty and bottom clutter. The effectiveness of CCA as the optimum detection tool is demonstrated in terms of probability of detection and false alarm rate.

Paper Details

Date Published: 29 April 2008
PDF: 10 pages
Proc. SPIE 6953, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII, 69530J (29 April 2008); doi: 10.1117/12.776465
Show Author Affiliations
Mahmood R. Azimi-Sadjdadi, Colorado State Univ. (United States)
J. Derek Tucker, Colorado State Univ. (United States)


Published in SPIE Proceedings Vol. 6953:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII
Russell S. Harmon; John H. Holloway; J. Thomas Broach, Editor(s)

© SPIE. Terms of Use
Back to Top