Share Email Print
cover

Proceedings Paper

Embeddable sensor mote for structural monitoring
Author(s): James W. Fonda; Steve E. Watkins; S. Jagannathan; Maciej Zawodniok
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An embeddable sensor mote for structural monitoring is described. The Missouri University of Science and Technology (MST) F1 mote is designed to provide a general platform for sensing, networking, and data processing. The platform consists of an 8051 variant processor, two 802.15.4 variant radio platform options, micro Smart Digital (SDTM) flash storage, USB connectivity, RS-232 connectivity, and various sensor capabilities. Sensor capabilities include, but are not limited to, strain gauges, a three-axis multi-range accelerometer, thermocouples, and interface options for other digital and analog sensors via a screw terminal block. In its default configuration the strain conditioning channel is appropriate for structural monitoring, but through reconfiguration it can be used with other resistive bridge transducers for pressure, force, displacement, etc. The F1 mote provides capabilities for strain, temperature, and vibration sensing in a small package. The mote is used at MST for networked monitoring of structures and networked robotic vehicles. In this paper an overview of the F1 mote will be given that emphasizes its operating architecture and potential applications. Applications include infrastructure monitoring for structures such as bridges, levees, and buildings as well as robotics, machine monitoring, and sensor networks. The described platform provides novelty in that it has the ability to be a dedicated structural monitoring system, however can be also used in development of other systems. The F1 platform was designed to combine features of available dedicated platforms and available development kits. The F1 provides a novel combination of sensing, processing, and application possibilities for the targeted application areas.

Paper Details

Date Published: 8 April 2008
PDF: 11 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69322V (8 April 2008); doi: 10.1117/12.776344
Show Author Affiliations
James W. Fonda, Missouri Univ. of Science and Technology (United States)
Steve E. Watkins, Missouri Univ. of Science and Technology (United States)
S. Jagannathan, Missouri Univ. of Science and Technology (United States)
Maciej Zawodniok, Missouri Univ. of Science and Technology (United States)


Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top