Share Email Print
cover

Proceedings Paper

Smart colloidal dampers with on-demand controllable damping capability
Author(s): G. Y. Zhou; B. Johnson; L. Z. Sun
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Smart dampers with on-demand controllable damping curves are key components for semi-active vibration control of structures. Smart dampers utilize friction or viscosity to dissipate mechanical energy by heat. The potential thermal problems are their major drawbacks. Novel colloidal dampers are recently developed with low-heat generation and high damping efficient, they are, however, passive and with no on-demand controllable damping capability. In this paper, we propose a smart colloidal damper by employing water-based ferrofluids in damping media. We find that the corresponding damping hysteresis loops can be affected by applied magnetic fields significantly and rapidly. We further retrieve the instant stiffness and damping coefficient of the smart colloidal dampers from the measured hysteresis loops. It is shown that the negative stiffness and the negative damping coefficient may occur during the operation of the smart colloidal dampers.

Paper Details

Date Published: 8 April 2008
PDF: 8 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69320R (8 April 2008); doi: 10.1117/12.775847
Show Author Affiliations
G. Y. Zhou, Univ. of California, Irvine (United States)
B. Johnson, Honda R&D Americas, Inc. (United States)
L. Z. Sun, Univ. of California, Irvine (United States)


Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top