Share Email Print
cover

Proceedings Paper

Sub-nanometer pitch calibration and data quality evaluation methodology
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Average CD of CD SEM and scatterometry CD (OCD) have been adopted for advanced CD control. The advantages and disadvantages of these two CD metrologies have been well discussed. The target of CD uniformity (CDU) for advanced technology has been driven to 1 nm, i.e. about three and half the size of a silicon atom, which is 0.29 nm. In the real production environment, engineers need to face sub-nanometer (< 1 nm) CD variations and do the necessary process corrections to meet the 1-nm CDU requirement. In other words, advanced CD process control has already been in the world of atomic scale. It turns out that methodology to ensure the accuracy of sub-nanometer CD has become essential for advanced CD control. In this paper, we introduced a methodology to produce 0.25, 0.5, and 1 nm programmed pitch offsets through mask design. These offsets are attainable with current process capability. Pitch offsets instead of line/space width offsets were used because the pitch is relatively process insensitive. The pitch has already been widely used as a CD SEM magnification calibration standard, e.g. Hitachi m-scale 240-nm pitch and VLSI 100-nm pitch standards. We produced large and small pitch splits to meet different magnification linearity requirements. We also used optical CD to verify the programmed pitch offset. Using the raw spectrum of OCD, systematic pitch signal changes in 0.25-nm steps can be detected, ensuring that 0.25-nm pitch offset standards are meaningful. Interestingly, 0.25 nm is smaller than the 0.29-nm Si atom. We also used this standard wafer to do the sampling size or data quality evaluation for different CD SEM measurement methodologies, e.g. 150K by 150K or 80K by 35K magnifications that in turn dictates the sample size. Pitch sensitivity is strongly related to the sampling size and line-edge roughness (LER). For example, 0.25-nm pitch sensitivity needs a larger sampling size than those of 0.5-nm and 1- nm pitch sensitivities. By means of this standard wafer, we can easily quantify metrology quality as well as choose the right metrology and sampling size for advanced process control.

Paper Details

Date Published: 22 March 2008
PDF: 6 pages
Proc. SPIE 6922, Metrology, Inspection, and Process Control for Microlithography XXII, 69220I (22 March 2008); doi: 10.1117/12.775410
Show Author Affiliations
Chih-Ming Ke, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Yu-hsi Wang, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Jaffee Huang, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Jimmy Hu, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Jacky Huang, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Tsai-Sheng Gau, Taiwan Semiconductor Manufacturing Co. (Taiwan)
Burn J. Lin, Taiwan Semiconductor Manufacturing Co. (Taiwan)


Published in SPIE Proceedings Vol. 6922:
Metrology, Inspection, and Process Control for Microlithography XXII
John A. Allgair; Christopher J. Raymond, Editor(s)

© SPIE. Terms of Use
Back to Top